
N TM X-55074
ITHRUI IACCTSSION NUMBER) s

"'

3
(NASA cu OR TMX OR AD NUMBER) ICATEOORYI

I -
1

2 CAMEO 4

*

I
4 i I

COMPUTER-INDfPENDENT ABSTRACT f - -
I . -
I .

- MACHINE-LANGUAGE - ENCODER I I AND
I 1 0 PERATING -SY STEM -

"1
i

I S Y S T E M DESCRIPTION

X
0 a
X
W -

E

I 7

JUNE 1964
\

,

GODDARD SPACE FLIGHT CENTER i -
GREENBELT, MARYLAND _-

CAMEO

- Computer-independent - Abstract

- Machine-language - Encoder and Operating-system -

System Description

T . P . Gonnan

CONTENTS

Page

INTRODUCTION. . 1

NOMENCLATURE . 6

THEABSTRACTMACHINE . 8

THE ENCODER . 8

PROBLEM PREPARATION AND PROGRAM CHECKOUT 9

A TYPICAL PROGRAM 17

SYSTEM PERFORMANCE 29

CONCLUSION . 34

ACKNOWLEDGEMENTS 34

1

INT RO DU C TION

Computing machines cannot produce their own programs, nor can
programmers perform the calculations they program.
be posed and the results interpreted by neither, but rather by the problem
sponsor who, on a problem of any size, is neither qualified to write the
program nor able to do the calculation. In other words, a program is
produced by a composite system made up of men and a machine. Since
this paper deals with a technique for making this system function more
effectively, i t begins with a simplified analysis of the complete process.

The problem can

In the original crude form of the programming process (Figure l) , the
programmer is trained to read the problem language (PL) and write the
machine language (ML). Only two disciplines a r e required, but the two a r e
far removed fromeachother for all but a few types of problems.
more , MLis often extremelyawkward to use because of its necessary but
unnatural rigor and complexity. Finally, since machine improvement and
problem improvement proceed independently but more o r less continu-
ously, representation of a problem in ML frequently results in a choice
betwe en inevitable obsole s c enc e and inopportune recording.

Further-

Early attempts to relieve some of the awkwardness of the
usual ML produced exact simulations on the given computer of other
more convenient "machines" in the form of interpretive programs.
simulations were more than adequately effective in reducing both the
cost and the delay involved in producing running programs.
rificed too much running speed, however, to win final acceptance and
were finally abandoned.

Such

They sac-

Figure 2 shows a la ter , more sophisticated system. An
assembly program has been introduced which accepts a computer oriented
language (COL) and converts it to the required ML. Of course, COL is
eas ie r to use than ML and the above-mentioned awkwardness due to
rigor has been removed. The complexity remains, however, and COL
is no less remote from PL. Moreover, a compensatory disadvantage
has appeared in the form of another system to master. The pro-
grammer , though he now writes in COL, still must know the ML
to interpret the resul ts of his program tests. Training now
costs somewhat more because it involves more. A program will

1

4
a

2

I _ _ .

3

not work unless both the COL processor (a program) and the ML processor
(a computer) a r e usedproperly, so that the incidence of programmer
blunders can be expected to increase somewhat along with the average
turn-around time. The programmer nonetheless reads and writes two
closely related dialects of the same basic language and can reasonably
be expected to become proficient at both, so that the net resul t is a
state of relative balance with COL a little eas ie r to write than ML i s
to read.

In an effort to remove the complexity still inherent in the COL, a
second addition to the process was made as shown in Figure 3. A
problem oriented language (POL) was introduced to produce COL to
produce ML. This step, far from correcting the previous slight im-
balance in favor of the l e s s significant activity of program writing,
only makes it worse. The programmer using such a system must
sooner o r later master four techniques: he must be able to read PL ,
write POL, read and write COL and read ML,
programmer e r r o r s , spread now over three processors , increases
significantly. Since the object of programmer training is to reduce
this probability to a satisfactory level, there is a concomitant increase
in i t s cost. Among even experienced programmers , fewer and fewer
find it possible to become even moderately expert in the now fourfold
complexities of their craft. Under such circumstances the net improve-
ment in the productivity of the whole program production system is
likely to be negligible.

The probability of

It is suggested here , on the other hand, that the responsiveness of the
program production man-machine system can be greatly improved and
that those early attempts to achieve this objective by creating more con-
venient pseudo-computers were based on sound principle. They used a
notation appropriate to the problem class of interest , and a straight-
forward operation-by-operation approach. They represented, in addi-
tion, a balanced aid to programming: the use r learned the pseudo-
machine i n place of the true machine, not in addition to it.

The serious inefficiency in the execution of programs written for
the early pseudo-machines was not the result of any essential quality
of the programming language used. It was due rather to the fact that
the simulation was unnecessarily exact, faithfully reproducing even
such functions as instruction fetching and operation decoding. Since a

4

1
I4
H

5

pseudo-machine is simply a convenient abstraction, it is by no means
necessary to simulate it when it can easily be approximated by a pro-
gram generator capable of producing more than adequately efficient
code. If there is a need to abandon the elegant se t theoretic notation
of the classic computing machine f o r the chaos of pidgin-algebra, it
does not ar ise f rom the requirement for efficient object codes.

This paper describes an abstract problem oriented machine (APOM)
which restores to program production the balance and simplicity i l lus-
t ra ted in Figure 4.
master but two disciplines: PL, as before, and abstract machine
language (AML). Furthermore, the steady-state process of program
production using an APOM leads naturally to a convenient division of
labor, and thence to a remarkably flexible responsiveness. Groups
o r teams, each formed of experts in one of the three disciplines, PL,
AML, ML, can be put to work in parallel on large problems with a
consequent increase in productivity and reduction of lead time. More
important i s the fact that such a division of labor creates the practical
capacity for asynchronous response to independent requirements, which
include both changes in the problems presented and changes in the
machines available. Almost four years of experience with the use of an
APOM on a wide variety of problems will be cited to testify to these
advantages.

As in Figure 1, the programmer once more need

NOMENC LATURE

F o r the sake of clarity several t e rms used la te r will be defined here.
The APOM will be called the abstract machine while the machine on
which it i s approximated will be referred to as the underlying computer.
The former will be said to execute commands, the la t ter instructions.
A program which approximates commands by instructions i s here called
an encoder. The system to be described is called CAMEO, which is an
acronym for "Computer-independent - Abstract Machine -language Encoder
and - Operating- system. ' I The abs t r ac t machineunder discussion is
called the Advanced Mystic, while the underlying computers are an
IBM-7094 with two banks of core storage, and the Univac 1107.

6

7

THE ABSTRACT MACHINE

The Advanced Mystic is a multiple address, floating point, fixed
p ro g ram de cimal computing I t machine ' I r e c o gni zing e i gh te en s e pa rat e
commands. It utilizes two forms of memory: a fixed non-addressable
operator memory for the program, and a modifiable addressable operand
memory for all numbers, symbols and flow connectors. Any location
in addressable memory can serve any of these functions and the dis-
tribution of underlying computer memory to these functions , while
normally two-to-one operator-to-operand, can be rese t to suit problem
needs.

Input and output a r e buffered and handle integers only, so as to
assure the possibility of exact conversion of base.
a r e carr ied in the form of decimal integers a s well, being represented
in the base one-hundred system of Table 1.

Alphabetic characters

No address modification is possible and individual commands a r e
not externally associated with underlying o r abstract machine locations.
The Advanced Mystic is rather so designed that any cell i n operand
memory can serve as an index regis ter for any other, and program logic
can be altered dynamically by modifying the contents of those operand
cel ls which serve a s flow connectors. It i s , in addition, equipped with a
"pathfinder" cell which retains the address of the last used flow con-
nector to aid in diagnosing unexpected halts.

THE ENCODER

Even though the Advanced Mystic is an abstract machine, the
encoding process fo r it is little different f rom what a rea l computer
would require. It amounts to readying the computer for solving
the problem at hand by filling operator storage with the proper coding,
and operand storage with the required constants, symbols and flow
conne cto r s.

The input to the CAMEO encoder takes the form of a 72 character
The f i r s t (leftmost) character of this record repre- operator record.

sents the operator code. Each of the 48 recognizable symbols can
serve a s the operator code, and each of these can have associated
with it a selection of arrangements of the remaining 71 characters
as addresses and parameters of varying s ize , type, and function.

8

In all, 25 standard operation codes a r e recognized by CAMEO.
These serve three purposes:
to support encoding, and the remaining eighteen represent the com-
mands of the Advanced Mystic machine. Two supplemental control
operators , defined differently for different underlying computers, a r e
described in the CAMEO manual for each.

four are used to control encoding, three

The encoding process is controlled by three control registers: the
current operator location register L, the key address register K, and
the equivalent address table Q
instruction is generated to represent each operator, i t is stored suc-
cessively at the location identified by the contents of L, after which L
is stepped by one to be ready for the next instruction. As each operator
is encountered, each address i s compared against the address equiv-
alence pairs of the Q table register. If a match is found, the address
is replaced by its equivalent.
increased by the current value of the K register.
which affect the contents of these registers are described i n Table 2.

As each underlying computer
1' 2' 100'

If no match is found, the address is
The encoder operations

Encoding receives necessary support f rom CAMEO operators
which affect only operand storage.
logical flow-connectors and to set operand locations to initial o r con-
stant numeric o r alphabetic values.
described in Table 3.

These operators serve to define

The effect of these Operators is

When the operator is one of the eighteen Advanced Mystic machine
commands, underlying computer instructions appropriate to the command
a r e generated and stored in successive locations in operator memory.
These operators a r e described in Table 4.

PROBLEM PREPARATION AND PROGRAM CHECKOUT

The preparation of a problem for solution is broken down into
successive stages. The f i r s t step consists in reducing the problem to
a s e r i e s of procedural steps, usually by way of a program plan o r flow
chart. Instead, of course, a symbolic program may be written. This
is a program in which at least some of the instructions have symbolic

9

Table 1

CAMEO Codes for Alphanumeric Characters

Character

Blank

1

$
t

:k
-
I

(
t

- -
1

A
B
C
D
E
F
G
H
I
J
K
L
M
N
0
P
Q
R
S
T
U
V
W

Card Code

Blank
12-3-8
12-4-8

12
11-3-8
11-4-8

11
0-1

0-3-8
0-4-8

3-8
4-8

12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9

0- 2
0- 3
0- 4
0- 5
0- 6

Octal Code

60
33
34
20
53
54
40
61
73
74
72
14
21
22
23
24
25
26
27
30
31
41
42
43
44
45
46
47
50
51
62
63
64
65
66

CAMEO Code

00
18
19
20
28
29
30
31
38
39
48
49
61
62
63
64
65
66
67
68
69
71
72
73
74
75
76
77
78
79
8 2
83
84
85
86

10

I - -

Charac te r

X
Y
Z

Zero
1
2
3
4

6
7
8

5'

Table 1 (Cont'd)

Card Code Octal Code CAMEO Code

0- 7 67 87
0-8 70 88
0- 9 71 89

0 00 90
1 01 91
2 02 92
3 03 93
4 0 4 9 4
5 05 95
6 06 96
7 07 97
8 10 98

1 9 I 9 I 11

Table 2

99 I

CAMEO Operators to Control Encoding for the Advznced Mystic Machine

Name Symbol

Key K(O)

Key K(P)

Effect on Encoding Control Registers

Clear the 9-table of all previous
entries and set the Kregis ter to zero.

Add the number p to the K register.

Origin

Cue

Transfer

Set the L register to the number p.

Add the pair p , q to the Q-table of
address equivalents.

Terminate encoding and begin execu-
tion of the compiled program at
location p.

11

Table 3

CAMEO Operators to Support Encoding f o r the Advanced Mystic Machine

Name

Begin-point

Value - given

Word- given

Symbol Function in Support of Encoding

Make location p a logical flow con-
nector for the commands which
follow.

Record in location p the floating point
number (my n) for use as a given value
in the object program.

Record in location p the symbol 1 as a
coded floating point integer for use
as a given word in the object program

Table 4

CAMEO Operators Representing Advanced Mystic Commands

~~

Name

Add

1
Compare

Symbol
1

Advanced Mystic Command I
Add the contents of locations q and
r and place the sum into location p.

Compare the contents of location p
with the contents of location q. If
contents-of-p exceeds contents -of-q
transfer to location r , i f contents-
of -q exceeds contents -of -p trans -
fe r to location s , i f contents-of-p
equals contents -of -q continue with
next instruction.

12

Table 4 (Cont’d)

Name

2 Compare

Divide

End

Function
(Note 1)

Get

Hold

Initialize

Jump

Loadl

(Notes 2,4)

Symbol Advanced Mystic Command
~

Compare the contents of p and the
contents of q. If contents-of-p
exceeds contents-of-q, transfer to
location r. Otherwise continue.

Divide the contents of location q by
the contents of location r and place
the quotient into location p.

Exit f rom the current instruction
sequence by transferring to locationp.

Store in location q + 1 the point-of-
return, in cell q + 2 the number r - q,
in cell q + 3 the number p - q, and
transfer to location q.

Get into location p the contents of the
location Specified by the number q
plus the contents of location r.

Hold the contents of location r in the
location specified by the number p
plus the contents of location q.

Initialize locationp to the value (m, n)
a normalized floating point number.

Jump to the program in system s tor -
age designated by the contents of
location p.

Load into successive locations begin-
ning with p, contents-of-q records f rom
the alphanumeric input medium indicated
by a; where the i-th word in each record
is the integer equivalent of an input field,
c. characters long, of type dis and b suck
sets of field descriptors follow i n suc-
ceeding command records.

13

1

Name

LoadZ

(Notes 2, 4)

Multiply

Name

1 Print

(Notes 3,4,5]

2 Pr int

Replace

Subtract

Title

Unpack

Xtr acode

Table 4 (Cont'd)

Symbol Advanced Mystic Command

Load into successive locations begin-
ning with p, contents-of-q words f rom
the machine-word input medium indi-
cated by r.

Multiply the contents of locations q and
r and place the product into location p.

Name location p a logical flow con-
nector for the coding which follows.

Pr int f rom successive locations begin-
ning with p, contents-of-q entitled
records on the alphanumeric medium
indicated by a; where the i-th field of
each record, c i characters long, of type
di i s determined f rom the i-th integer
of the record, and b such se t s of field
descriptors follow in succeeding com-
mand records.

Pr int f rom successive locations begin-
ning with p, contents-of-q words on
the machine -word-output medium in-
dicated by r .

Replace the contents of location p by
the contents of location q.

Subtract the contents of location r f rom
the contents of location q and place
remainder into location p.

Load the title regis ter positions 1-71
with characters t l to t71.

Unpack the integer portion of the float-
ing point number stored in location
q and s tore the integer in location p.
The contents of location q remain
unaltered.

Transfer to the machine language sub-
routine located a t p, with interface
vector x1 ... x1 3.

14

Note 1)

Note 2)

:Note 3)

'Note 4)

:Note 5)

Table 4 (Cont'd)

This instruction makes it possible to transfer to a function
and after its execution, continue to the next instruction.
Normally r contains the input to the function and p is to
contain the output.

~ ~~

In case the input medium is tape, a special interpretation is
placed on the contents of q a s follows: if q is zero backspace
one file, i f q is the negative integer -n, backspace n records.

In case the output medium is tape, a special interpretation
is placed on the contents of q a s follows:
end-of-file; i f q is negative, rewind.

i f a is zero, write

The field a contains four characters. The leftmost i s one
of (C, P, T) for Card, Printer, Tape, respectively.
is one of (A, B, C, D, E , F, G , H, I) for selection of units
within the type.
o r (Binary) machine-word, respectively. The field c1. . .c18
consists of eighteen two-digit numbers.
consists of eighteen le t ters , where each is one of (A, N, F, S)
for Alphabetic, Numeric, Full-numeric and Skipped. In case
d i i s A, ci must not exceed 4; in case d i i s N, ci must not
exceed 9; in case d i i s F, ci must not exceed 8; when di is S ,
c. may be a s large a s 15.

An entitled record is the logical sum of the given record and
the contents of the title register.

The next

The next is either blank or B, for decimal

The field dl. . . d18

1

addresses.
assigned a box on a memory map; the form used for this purpose i s
shown in Table 5. Finally, the actual program is written on a suitable
form and punched according to the directions in Table 6 . Computer
input in the form of a program deck is the final resul t and the pro-
gram is ready for testing.

The variables of the problem a r e then, in any case, each

Programs to solve problems of any significance a r e generally
decomposable into several sub-programs. In the CAMEO system, sub-
programs a r e written a s virtually independent programs to be assembled
for final checkout. Each subroutine is mapped for the small number
addresses , and addresses to be replaced at assembly a r e usually given
illegal values to make possible automatic detection of overlooked
assignments. Finally, an executive routine is written to bind all the

15

Table 5

ADVANCED MYSTIC STORAGE MAP

I PAGE-OF-

PROGRAM:

PROGRAMMER:

00

05

10

i

1

15

20

1

. 5 5

60
1

, 80

I 85

, 90

2 9

. .

subroutines into the master problem solving routine.
is first checked separately, then the whole routine is built up as it is
subjected to successively more comprehensive systems checks. The
K and Q commands of the CAMEO system make the entire process
straightforward and trouble free.

Each subroutine

When a program o r sub-program is ready for testing, it is
recorded on magnetic tape and, with suitable input, a tes t run is con-
ducted. The program is encoded and executed and a print of memory
is sent to magnetic tape. Since only operand storage is of any signif-
icance, only this is printed; and since all numbers a r e in floating point
form, only floating point decimal output is obtained. This program
also reads out the pathfinder cell to help locate unexpected troubles.

While the memory print is the basic checkout tool, other more
sophisticated ones are available. These include an interval core dump
i n which specified memory locations are printed pr ior to the execution
of specified logical connectors,
language. Experienced use of these programs drastically reduces the
number of records read out, and this reduction saves both computer
time and man-hours with no loss of responsiveness o r speed of pro-
gram production.

and a tracing program in CAMEO

A TYPICAL PROBLEM

The memory print routine used for checkout support in CAMEO i s
an Advanced Mystic program and a fairly representative one.
written as a subroutine which calls for a subroutine, which in turn
calls for a subroutine.
amount of logical, as well as arithmetic manipulation is involved.
a routine, of course, can not be called computer-independent since
computer characterist ics create its necessity and influence its logic.
It is, however, much more nearly independent when written in a computer-
independent language since it i s applicable unchanged to computer s similar
to the IBM 7094 in number base and floating point conventions, and
requires only tr ivial changes for application to computers dissimilar
to the IBM 7094 i n these respects.

It is

Output of various kinds is produced and a certain
Such

The general objective of the program is to print a specified set
of consecutive storage regis ters i n the form of floating point decimal
numbers.
locator which identifies the storage regis ter f rom which the leftmost
number was taken.

Each line i s to consist of five such numbers and a line

Other numbers in the line a r e understood to occupy

17

Table 6
CAMEO Punching Instructions

[. Field Descriptions by Field Types

TY Pe

a

b

C

d

1

m
n

P

q
r

S

t

X

Length

4

1

36

18

4

9
3
5

5
5

5
71

6 5

Description

Alphabetic, left justified, blank filled

unsigned numeric

unsigned numeric, left justified, blank
filled , representing eighteen two -digit
numbers.

alphabetic, left justified, blankfilled, r e ,
presenting eighteen one- character words.

alphabetic, left justified, blank filled.

signed numeric

signed numeric
unsigned numeric

unsigned numeric

unsigned numeric

unsigned numeric
alphanumeric, left justified, blank filled.

unsigned numeric, left justified, zero
filled, representing thirteen five-digit

. .

18

the following four consecutive registers.
is bounded from below and above by the integer contents of the two cells
usually used to locate function argument and result.

The printed set of regis ters

The conversion process amounts to finding a pair of integers
(D, d) such that for a given

D x l O x
- 8

But this implies
- 8

D x l O =

so that
. 1

binary number B, we have

10 = B where lo7 5 D < l o 8 - d

B x and . 1 D x

B x C l and

which defines d. Then
8- d

D = B x l O .
Incomputers similar to the IBM 7094, the magnitude of B must be

grea te r than 2 to the -129 but less than 2 to the 128.

requires d to l ie between -38 and t38, which means 8-d can be as large
as 46.
(8-d) exceeds 34 is circumvented by carrying the powers of ten from 0
to 46 divided by 2 to the 27.
final s tep without, however, introducing any e r r o r since this operation
effects an adjustment in the exponent alone, leaving the mantissa
unchanged.

This i n turn

The inability of the computer to represent 10 to the (8-d) when

This power of 2 is eliminated f rom D in the

Table 7 represents the plan of the print routine.
test is made to see whether the subroutine has been entered by a call
f rom a function command or by an emergency manual jump. Initial and
final values of the line counter a r e se t i n step 4 o r 5. The loop begins a t
step 6 and runs to s tep 13. At step 9, printing is skipped if every word
of the line is zero.
value, thereby anticipating the tes t of step 1 at the next entry.

In step 2 a

Step 14 restores the argument cel l to its nominal

The memory map with assignments for this subroutine appears in
Table 8. Note that while the program is written a s though it used loca-
tions 1-30, through the CAMEO key operator it can be assigned to occupy
any 30 consecutive locations anywhere in operand storage.

Table 7

Connector (1)

Connector (2)

Connector (3)

Connector (4)

Program Plan for
Subroutine: Print-out Memory Control

1. Pr int Pathfinder cell and skip one line.
2. If the tes t word is not nominal, go to connector

(1).
3 . Set "End Print ' ' to "Final Halt."
4. Set loop bounds to nominal values, go to con-

nector (2) .

5. Set loop bounds f rom tag #1 and tag #2.

6. Bump word counter by five.
7. If the next line i s beyond the las t line requested,

go to connector (4) .
8. Retrieve five consecutive words from storage.
9. If any of the words is not zero, go to connector

(3) .
10. Go to connector (2) .

11.
12.
13. Go to connector (2) .

Convert five words to integer pairs.::
Pr int word counter and five integer pairs .

14. Set the tes t word to its nominal value.
15. Go to "End print."

::Subroutine: Convert Binary to Decimal (s e e Table 10).

20

Table 8

o s

Tag #1
t
I

0 .

 connector (4)
I 3

1 Nominal ”
Hi -bound

23 . . .
2 6 . . .
S S

ADVANCED MYSTIC STORAGE MAP

0 .

Tag #2
0 .

I .

Nominal I ’

Test-word
2.

. . .
I .

. . .
3.

1 1 PAGE-OF-

Print-out Memory Control
PROGRAM:

of line
a s I C 3 7 s a

T. P. Gorman PROGRAMMER:

I .

, 00

, 0 5

10

15

20

1 3 ,

I ,.

35.

0 0 oa I Start Pr in t “1 End Pr in t

zero one
I ¶ Nominal

five Lo -bound
~ ~~

2ndword * a

Word counter of line
I S 2 6 2 1

10th word 10 3 1 I 2

The code is shown in Table 9. The Q-operators allow necessary
access to absolute locations 0-4 regardless of the a r e a of storage
assigned to the subprogram. The function commands refer to a location
beyond the end of the program. This location is filled by the next sub-
routine to be discussed: the binary-to-decimal conversion subroutine.

The plan for this Binary to Decimal Conversion subroutine appears
in Table 10, the assignments in Table 11, and the code in Table 12. P r e -
ceded by a K30 operator, this subroutine is made to begin just after the
end of the printout memory subroutine.

Steps 1-10 of the plan generate the required table of powers of ten
the first time the routine is entered. All subsequent entr ies are then
made to occur at-step 11. Steps 11-14 split the argument, a binary
number B, into sign and magnitude and s tore a zero result-pair for a
zero input. If, at step 19, the magnitude of the input number exceeds

21

Table 9

CAMEO Code for
Subroutine : Pr int-out Memory

1. Q
2. Q
3. Q
4. Q

6. Q
7. B
8. T
9. P

10. T
11. P
12. c
13. R
14. R
15. S
16. E
17. B
18. S
19. B
20. A
21. c
22. G
23. G
24. G
25. G
26. G
27. C
28. C
29. C
30. C
31. C
32. E
33. B
34. F
35. F
36. F
37. F
38. F
39. P

5. Q

90000 0
90001 1
90002 2
90003 3
90004 4
90010 30000

PATHFINDER READS
1

90010

0
3
2
3

20
6
5

20
6

20
20
21
23
25
27
29
10
10
10
10
10

6
7

21
23
25
27
29
20

11

11
19
10
18
17

4

20
3

90000
90001
90002
90003
90004

21
23
25
27
29

31
31
31
31
31
11

TI 150106
S S N

TI
5 5 Skip if specified print.

Set up for nominal print.
15

15

15 Bump line counter
8

20
20
20 Retrieve next line
20
20

7 7
7 7
7 7 Test line for non-zero
7 7 element
7 7

21
23
25
2 7
29
TI 06020903010903010903010903010903

Convert Line to be printed

N S N N S N N S N N S N N S N N

22

Table 9 (Cont'd)

40. E
41. B
42. R

43. E
44. v
45. v
46. V
47. v
48. V
49. v
50. V

6
8
3 19 Restore t e s t value of argument and

re turn or halt.
2
3 t 12345678t08

10 t O O O O O O O O t O O Necessary constants
11 t 10000000+01
15 + 50000000t01
17 + OOOOOOOOtOO
18 t 10000000t05
19 t 12345678t08

Star t Convert

Table 10

Program Plan for
Subroutine: Convert Binary to Decimal

1.
2.
3.
4.
5.

F o r m 2 to the 27th
Set powers of ten counter i to zero
Set power of ten P to 2 to the -27th
Set first i tem To in table Ti to P
Replace Start Convert by Star t Convert**

Start Convert**
i

6. Bump i by one
7. Replace P by P x l O
8. Replace Ti by P
9. If i is less than 45, go to Star t Convert**

10. Replace Start Convert** by Start Convert*

23

Table 10 (Cont'd)

Start Convert::

Connector (1)

Connector (2)

Connector (3)

Connector (4)

Connector (5)

Connector (6)

~

11. Retrieve number to be converted, B using

12. Replace S by t 1
13. If M(B) exceeds zero, go to connector (1)
14. Replace S by -1 and M(B) by -B
15. If M(B) exceeds zero, go to connector (1)
16. Store two zeros in cells indicated by tag #2
17. Go to End Convert

tag #1, and save in M(B)

18.
19.
20.

21.
22.
23.
24.
25.

Set shift direction j to t 1
If unity exceeds M(B), go to connector (3)
Obtain d, the la rges t integer not greater than

If d exceeds seven, go to connector (2)
Retrieve T(7-d) f rom table Ti i = 0 , 1, ... 45
Form M(D) = M(B) x T(7-d) x 2 to the 27th
Replace d by d t 1
Go to connector (4)

log M(B)':'

26. Set shift direction j to -1
27. Retrieve T(d-7) f rom table Ti i = 0 , 1, ... , 4 5
28. Form M(D) = M(B) + (T(d-7) x 2 to the 27th)
29. Replace d by d t 1
30. Go to connector (4)

31. Replace M(B) by 1 + M(B)
32. Obtain d, the la rges t integer not greater than

33. Retrieve T(d+8) f rom table Ti i = 0 , 1, ..., 45
34. Fo rm M(D) = M(B) X T(dt8) x 2 to the 27th
35. Replace d by 1 - d

log M(B)':'

~

36. Half adjust M(D)
37.
38.

39.
40.
41. Go to End Convert

If M(D) exceeds 99,999,999, go to connector(7)
If 10,000,000 exceeds M(D), go to connector (6)

F o r m D = M(D) x S
Store D, d in cel ls indicated by tag #2

42. Replace T(dt8) by T(dtgtj) , and d by d-1
43. Go to connector (8)

24

Table 10 (Cont'd)

Connector (8)

I Connector (7) I 44. Replace T(d+8) by T(d+8+j), and d by d +1

45. If d exceeds seven go to connector (9)

47. Go to connector (5)
46. Form M(D) = M(B) x T(d+8) X 2 to the 27th

~ ~~

48.
49. Go to connector (5)

Form M(D) = M(B) + (T(d+8) x 2 to the 27th) I
~~

Connector (9)

*Subroutine: Table Search (see Table 13)

o r equals unity the proper power of ten is determined by a table search
(step ZO), and the mantissa produced with a single non-trivial multipli-
cation (steps 21-25) or division (steps 27-30) to minimize round-off
e r ro r .
number is less than one is treated similarly.
proper sign to the output after half-adjustment and return to the calling
routine.

In steps 31-35, the case where the magnitude of the input
Steps 36-41 attach the

This subroutine, too, calls for a subroutine to do the required
table search. The program plan, memory assignment, and code for
this subroutine appear i n Tables 13, 14, and 15 respectively. Judicious
location of the table to be used in the previous subroutine and to be
searched in this one allows this subroutine to be adjoined to the others
with a second K30 operator.

The Table Search to B-racket subroutine is a straightforward binary
search which yields the largest power of ten still less than the number
-being matched.
table range. Steps 3, 4 initialize the search which is conducted in the
loop described in steps 5-13. Step 14-15 handles the exact match case.

Step 2 of the plan scales down the argument to the

The printout memory subroutine is now complete. Memory assign-
ments for it a r e given in Table 16 to show the effect of the two K30
operators used above. Prefixing a suitable K operator, such as K9700,
to the entire Print-out Memory subroutine has made it occupy locations
9701-9829. Prefixing a different K operator, like K511,
other hand alone be sufficient to establish i t in locations

would on the
51 2-640.

25

Table 11

J

0 0

00

PAGE 10~1

P R O G R A M : Convert Binary to Decimal

T. P. Gorman PROGRAMMER:

NOTES :

05 Connector(1) II
0 1

Start Convert

Connector(2)
0 6

2 0

,2011 zero
II 2 5

0 2 0 1 0 4

End Convert tag #I tag #2

Connector (3) Connector (4) Connector(5)
0 7 0 8 0 .

i and j I 7 5

~

1 6

forty-five

1 0

I 7 I 8 I D

seven 2 to the 27th

I

I S

~ ~~

2 8 2 7

P d-8
3 1 3 2

ADVANCED MYSTIC STORAGE MAP

2 8 2 s

M(D) 1 i M(B)
$ 1 3 4

4 6

I 2 I4

Connector (7) " I Connector (8) 1 Connector (91'1 99, 999, 999

4 7 4 8 4 n

5 6 . . . 5 7 5 0 5 s
6 1 I 8 2 . . . I . . .
6 5 6 7

4 0

8 3 6 4
6 8 8 0

II 4 5

. . .

45

.

, 501) To
5 5

~~

7 6 . . .
8 1 . . .

7 5 . . . , 7 5

~~ ~~

7 7 7 8 7 1 "
8 2 8 3 8 4 +

P O . . . 90

8 6 . . .
S I . . .
O S

M(B)
B 5

95 T45

8 7 8 8 I D
9 2 9 3 B 4
¶ 7 1 8 B B

S D d

3 6 1 3 7 I 3 . 1

4 2 1 4 3 1

4 4

. I . . .

7 4 . . . 7 1 1 . . . 7 2 1 . . . 7 3 1 . . .

26

Table 12

CAMEO Code for
Subroutine: Binary to Decimal Conversion

1. K 30
2. B 1
3. A 19
4. R 25
5. D 26
6. R 50
7. N 1
8. A 25
9. M 26

10. H 50
11. C 16
12. N 1
13. G 96
14. R 97
15. C 96
16. S 96
17. S 97
18. C 96
19. H 1
20. H 2
21. E 2
22. B 5

15
20
21
26

25
26
25
25

1
21
20
20
20
20
4
4

15

19

21
22
26

1

3

5
96
21

5
20
20

23. I 25 t 10000000 t 01
24. C 21 96 7
25. F 99 31 96
26. C 99 17 6
27. S 27 17 99
28. G 26 50 27
29. M 28 96 26
30. M 28 28 19
31. A 99 99 21
32. E 8
33. B 6

35. S 27 99 17
36. G 26 50 27
37. D 28 96 26
38. D 28 28 19
39. A 99 99 21
40. E 8
41. B 7
42. D 29 21 96
43. F 99 31 29

34. I 25 - 10000000 + 01

R e lo cat0 r
Initial start of function

Generate table of scaled-down powers
of ten

Steady-state start of function

Test argument for zero, form absolute
value and record sign.

Argument is not zero

Test for less than one
Obtain nearest power of ten
T e s t for greater than seven

Form decimal equivalent number
p a i r for number l e s s than o r equal
to ten to the seventh.

Form decimal equivalent number pair
for number greater than ten to the
seventh.

27

Table 1 2 (Cont'd)

$4. A
$5. G
$6. M
47. M
48. S
49. B
50. A
51 . U
32. C
53. c
54. B
55. M
56. H
57. H
58. E
59. B
60. M
62. S
63. E
64. B
65. S
66. G
67. A
68. B
69. C
70. M
71. M
72. E
73. B
74. D
75. D
76. E

27
26
28
28
99

8
28
28
28
24

9
98

1
2
2

10
28
99
12
11
27
26
99
12
99
28
28

9
13
28
28

9

99
50
96
28
20

28
28
14
28

28
4
4

2 8
99

27
50
99

17
96
2 8

96
2 8

18
27
26
19
99

23

11
10

97
98
99

2 2
21

25
27
2 1

13
26
19

26
19

Form decimal number pair for binary
number less than one.

Half adjust and test output integer
M(D) for normalization.

Attach sign, s tore resul t and return to
main program.

M(D) is less than 10,000,000
Shift left to normalize

M(D) exceeds 99,999,999

Shift right to normalize

77. V 14 t 99999999 t 08
78. V 1 5 t 67108864 t 08
79. V 16 t 45000000 t 02
80. V 1 7 t 70000000 t 01
81. V 18 t 80000000 t 01
82. V 20 t 00000000 t 00
83. V 21 t 10000000 t 01
84. V 22 t 10000000 t 02
85. V 23 t 50000000 t 00
86. V 24 t 10000000 t 08

. -

28

Table 13

Program Plan for
Subroutine: Table Search

Start Search

Connector (1)

Connector (2)

End Search

1. Retrieve number to be bracketed M(B) using

2. Scale to table by multiplying by To
3. Set increment I to 2 to the 6th
4. Set counter C to zero

tag #1

5.
6.
7.
8.
9.

10.
11.
12.
13.
14.

Replace I by I + 2
If 1 exceeds I , go to connector (2)
Replace trial counter C* by C t I
If C* exceeds table size, go to connector (1)
Replace C by C*
Retrieve C-th item from table:
If M(B) exceeds T, go to connector (1)
Replace C by C-I
If T exceeds M(B), go to connector (1)
Replace C by C + I

T

15. Store C using tag #2

SYSTEM PERFORMANCE

The system described here has been i n use in successively more
A description of the first system powerful versions since mid-1955.

was published i n the Journal of the ACM i n October of that year (see
reference 1). Redesigned and reworked fo r the IBM-704 and IBM-650
and Univac 1103A, a new version was published through ASTIA in
February of 1958 (see reference 2).
was used by small groups of people at the Applied Physics Laboratory
and at the RCA Patrick Air Force Base computation center.
complex programs were written during this period including a six-
degree-of-freedom guided missile simulation, a pseudo analogue computer,
and a symbolic assembly program for the Univac 1103A.
these programs were published internally at the Johns Hopkins Applied
Physics Laboratory.

Up until the end of 1959 the system

Several

Reports on

29

Table 14

+

00

05

1

. . . T
0

T
2 2 2 3 2 4

2 1 1

2 0

2 s 2 4 2 7 2 8 2 0

3 0 3 1 3 2 3 3 3 4

3 5 3 6 1 7 3 8 3 0

4 0 4 1 4 2 4 3 4 4

4 s 4 6 4 7 4 8 4 9

5 2 5 3 5 4

5 6 5 7 58 55

s o

5 s

6 0 8 1 8 2 8 1 8 4

.
6 5 6 8 6 7 8 8 6 0

T45
7 0 7 1 7 2 7 3 7 4

7 5 7 6 7 7 7 8 7 0

8 0 1 1 8 2 8 3 8 4

8 5 8 6 8 7 8 8 8 *

0 0 9 1 9 2 0 3 0 4

9 5 0 6 e 7 e 8 0 0

10

15

20

4

30

4

,40

4 5

50

I

, 55

60

4

4

I 7 5

, 8 0

, 8 5

190

95

I

PAGE IO FL

PROGRAM: Subroutine: Table Search

PROGRAMMER: T. P. Gorman

NOTES :
30

ADVANCED MYSTIC STORAGE MAP

Table 15

CAMEO Code for

Subroutine: Table Search to Bracket

1. K 30
2. B 1
3. G 8 1 3
4. M 8 8 20
5. R 6 14
6. I 5 t 00000000 t 00
7. B 9
8. D 6 6 12
9. c 1 1 6 10
10. A 7 5 6
11. c 7 13 9
12. R 5 7
13. G 7 20 5
14. C 8 7 9
15. S 5 5 6
16. C 7 8 9
17. A 5 5 6
18. B 10
19. H 1 4 5
20. E 2
21. v 1 1 t 10000000 + 01
22. v 12 t 20000000 + 01
23. V 13 t 45000000 t 02
24. V 14 t 64000000 t 02

Relocato r

Obtain and scale-down argument

Set counter and increment

Search loop
Halve increment and exit on

Augment counter and return on table
exhaustion of interval

overflow

Obtain table entry and adjust counter
up o r down by comparison with
argument.

Argument equals entry. Restore counter
End of search. Store result and return

to main program.

Ne ce s s ary constants

In December of 1959 this system was applied to the computational
problems of the Data Systems Division of the Goddard Space Flight
Center.
spacetask computing system to support unmanned spacecraft orbit
determination and general spacetask analysis. This IBM 7090 system
(see reference 3) was produced in less than three' years by nine people
with no IBM 7090 experience and contains no machine language instructions

This work consisted mainly i n the production of a comprehensive

31

Table 16

ADVANCED MYSTIC STORAGE MAP

PAGE 10~2

Me mo r y Print Routine PROGRAM:

PROGRAMMER : T. P. Gorman

, 05 Connector(1)
IO

1011 zero
II I 5

15 five
2 0

. . .

+
x 2

0 1

.

e 4
1- ~~

e 1 e 2 6 1

Start Search End Search tap #1 tag # 2
n e 6 1 e n # e

inc r ement t ri a1 value M(B) Connect0 r(1)

one two forty-five 2 to the 6th
1 1 7 2 7 3 7 4

1 2 e 4
- 2 7 ' ' 2 -27 10 x 2 1 10 x 2

e 6 e 7 e # m e
9 1 1 2 0 1 s 4
O S 0 7 0 8 0 9

NOTES :
32

Table 16 (Cont'd)

ADVANCED MYSTIC STORAGE MAP

PAGELOFL
PROGRAM: Memory Print Routine

P R O G R A W E R : T. P. Gorman

at all.
tions and is in current operational use, determining the orbits of all the
unmanned scientific and applications spacecraft for which the Goddard
Space Flight Center is responsible.

It represents more than half a million machine language instruc-

CAMEO has proved its capacity to enhance the productivity of
professional programmers on more than one occasion.
produce a two-phase data analysis and plotting program for an emergency
trapped radiation experiment and for this task was modified to accept
machine language programs i n a standard form derived from FORTRAN
output.
launch of the S - 6 Atmospheric Structure Satellite.
required the extension of the system, with no external change, to the
use of two-bank memory available on the IBM 7094. Most recently the
use of the CAMEO system has permitted the simultaneous extension of
the SPATS orbit determination system to complete 16 digit mode and the
t ransfer of all eight digit programs to the Univac 1107 in a six-month
period using two man-years of effort.

It was used to

Data analysis programs were written i n CAMEO again for the
This program

33

CONCLUSION

Experience has shown that when problems are programmed entirely
i n t e rms of commands for an APOM, all phases of the programming
process a re in practice as well as theory, greatly simplified.
practical capacity for extending routines as i l lustrated in the example
has for instance significantly enhanced the efficiency of the program
production process. The design of the input-output operations has
straightened the way in and out of the machine for the programmer
without restricting formats o r erecting baroque report generators.
The CAMEO programmer uses a strictly functional instrument to
define the required algorithm, converts his subroutines quickly and
surely, wastes no time with paraphernalia like binary cards and octal
dumps and mysterious diagnostics, and has little reason to f r e t over
anything but the problem to be solved. The result is not surprising:
the CAMEO programmer solves more problems, solves them more rapidly
and requires less time for training.

The

ACKNOWLEDGEMENTS

To Mr. R. G. Kelly, former Assistant Chief of the Data Systems
Division, should go a substantial share of the credi t for the production
of CAMEO and Advanced Mystic. He presented the challenges, helped
with the design, and was ready to do something a different way because
it was a better way. Mr. J. J. Fleming, Chief of the Data Systems
Division, and Mr. D. H. Gridley, Associate Chief, gave the project a
fair evaluation based on its merits.
Roy, for her c lear vision and firm leadership; and to Mrs. Joan T. Jones
as well, by whose efforts the CAMEO system was finished and documented;
and to Mrs. Sally A. Richmond who helped immeasurably with both activ-
ities. A final word of appreciation goes to those problem sponsors who
had the insight to ask for resu l t s and not prescribe methods; in particular
to Dr. Joseph W. Siry, Dr. Peter Musen and Dr. Wilmot N. Hess.

Thanks a r e due to Mrs. Melba L.

References

1. Gorman, T. P., Kelly R. G. , and Reddy, R. B., Automatic Coding
fo r the IBM-701, Journalof the ACM, Vol. 2 #4, pgs. 253-261,
October 1955.

2. Gorman, T. P., andKelly, R. G., Mystic: An Automatic Coder
for the IBM 650, IBM 704 and ERA 1103 AF, Astia Document
1 3 42 74 AF'M T C - T N - 5 8 - 2.

3. Gorman, T. P., Spacetask Planning Analysis and Tracking System
Used at Goddard Space Flight Center for Scientific Spacecraft
Orbits. Paper Presented at the Third Annual ACM Symposium on
Computing i n the Washington D. C. Area.

35

